POST-DOCTORAL FELLOWSHIP: scoring descriptors criterion “Candidate” (preselection)

<table>
<thead>
<tr>
<th>Score</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1/D</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>1/C</td>
<td>Weak</td>
</tr>
<tr>
<td>2/B-</td>
<td>Fair/Reasonable</td>
</tr>
<tr>
<td>3/B</td>
<td>Good/Very good</td>
</tr>
<tr>
<td>4/B+</td>
<td>Excellent/Outstanding</td>
</tr>
<tr>
<td>5/A-</td>
<td>Excellent/Outstanding</td>
</tr>
<tr>
<td>6/A</td>
<td>Excellent/Outstanding</td>
</tr>
<tr>
<td>7/A+</td>
<td>Excellent/Outstanding</td>
</tr>
</tbody>
</table>

1.a. Scientific contribution of the candidate

Please take into account the candidate’s scientific seniority (in a “jr.” resp. “sr.” context, and taking into account possible career breaks). Assess important research results and scientific contributions to the field as evidenced by (rather than the quantity) the quality and impact of the publication record, as well as other scientific output (invited contributions, conferences, patents, teachings, monographs, ...), and impact beyond publications. An emerging scientific reputation and an upward trajectory are relevant criteria as well. For senior post-docs, scientific independence (as e.g. evidenced by publications without PhD supervisor, ...) is a relevant asset.

No scoring possibility
- Rather limited scientific contribution to the state-of-the-art, and little evidence of an upward trajectory.
- Average scientific contribution to the state-of-the-art. Some evidence of a starting upward trajectory or (sr.) earlier upward trajectory is not continuing.
- Meaningful contributions to the state of the art, properly acknowledged in the scientific community. Evidence of emerging (international) reputation in a clear upward trajectory. AND (sr.) Developing scientific independence.
- Impressive scientific contribution: original, clear achievements beyond the state-of-the-art. Emerging international recognition for influential research output. AND (sr.) Proven clear path towards scientific independence.

1.b. Motivation and substantiation of relevant competences of the candidate

This criterion assesses whether the candidate has the right scientific background and competences, in relation to the proposed project, and as required for a postdoctoral researcher in general. Has the candidate gained relevant experience and performed relevant collaborations outside the host institution (mobility)? In general, is the candidate acquiring the proper skills in terms of the anticipated career development, and does the application (motivation statement) reveal proper motivation and vision?

Senior postdoc candidates: research supervision and mentoring and the involvement of the candidate as (co-)promoter in research projects can be taken into account.

No scoring possibility
- Little evidence of (development of) some crucial competences, such as scientific background and the building up of proper career-related expertise as mobility and collaboration, (sr.:) supervision/mentoring.
- One or more of the following items apply:
 - Proper scientific background and built-up expertise is substantiated, but still shows some flaws, that are not all being dealt with in the application,
 - there is less evidence of acquiring or acquired career-related competences as mobility and collaboration, (sr.:) supervision/mentoring, ...
- All of the following items apply:
 - The candidate is developing (jr.) or has developed (sr.) good skills and expertise to execute research beyond the state-of-the-art. Potential flaws are identified and being dealt with.
 - The candidate provides evidence of carefully and motivatedly building up a research career as well as the required skills (w.r.t. mobility and collaboration outside host institution, (sr.:) supervision and mentoring, ...
- All of the following items apply:
 - The candidate is developing (jr.) or has developed (sr.) excellent skills and ample scientific experience, and shows the ability and potential to propose and conduct groundbreaking research.
 - The candidate is ready to acquire (jr) or has acquired (sr) competences, as well reveals the drive that improve the prospects of reaching/reinforcing a position of professional maturity and independence.
2.1 Scientific quality, relevance and challenge, originality

<table>
<thead>
<tr>
<th>Unacceptable</th>
<th>Weak</th>
<th>Fair/Reasonable</th>
<th>Good/very good</th>
<th>Excellent/outstanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>One or more of the following items apply:</td>
<td>One or more of the following items apply:</td>
<td>One or more of the following items apply:</td>
<td>All of the following items apply:</td>
<td>All of the following items apply:</td>
</tr>
</tbody>
</table>

- The project is out of scope: it does not comply with the scope of the panel it was submitted to. (preselection only)
- The project does not contain real scientific risks or challenges. There is no contribution to the international state-of-the-art
- The project focuses on (economic/societal) valorization with one stakeholder (cf. “innovation mandates” at Flanders Innovation & Entrepreneurship - VLAIO).
- The research methodology and project planning are flawed in terms of matching with project objectives. The intrinsic feasibility is low.
- The objectives are formulated in insufficiently concrete terms, making it difficult to evaluate their feasibility,
- The feasibility is less realistic, but it is likely that part of the scientific goals will be reached.
- The research methodology is reasonable but with some shortcomings or a lesser fit to the scientific goals,
- The project is fairly/reasonably challenging or the project is sufficiently challenging but the potential is insufficiently explored.
- The added value of the project w.r.t. international state-of-the-art is acceptable, but less pronounced or less well elaborated.
- The project is original and soundly builds upon and significantly contributes to the international state-of-the-art.
- High-quality fundamental research project with good level of risks, challenges and inventiveness.
- The research risks, with alternative research strategies.
- Highly ambitious and original project of potentially groundbreaking nature and large scientific impact.
- Very high level of scientific risks. Clear inventive and challenging ideas, novel concepts and strategies.

2.2 Quality of the research methodology and feasibility of the project

<table>
<thead>
<tr>
<th>Unacceptable</th>
<th>Weak</th>
<th>Fair/Reasonable</th>
<th>Good/very good</th>
<th>Excellent/outstanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>One or more of the following items apply:</td>
<td>One or more of the following items apply:</td>
<td>One or more of the following items apply:</td>
<td>All of the following items apply:</td>
<td>Requirements as in “very good”, AND thorough identification of the research risks, with alternative research strategies and “fall back” research options.</td>
</tr>
</tbody>
</table>

- Evident discrepancy or mismatch between the research goals and research methodology.
- The realization of the scientific goals is not feasible with the proposed research methodology and/or project planning.
- The research methodology and project planning are flawed in terms of matching with project objectives. The intrinsic feasibility is low.
- The objectives are formulated in insufficiently concrete terms, making it difficult to evaluate their feasibility,